NTRODUGTION TO COMPUTER VSION

Atlas Wang

Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

Finally: Motion and Video!

Tracking objects, video analysis, low level motion

Motion vs. Stereo: Similarities/Differences

- Both involve solving
- Correspondence: disparities, motion vectors
- Reconstruction
- Motion:
- Uses velocity: consecutive frames must be close to get good approximate time derivative
- 3d movement between camera and scene not necessarily single 3d rigid transformation
- Whereas with stereo:
- Could have any disparity value
- View pair separated by a single 3d transformation

Today We Focus on: Optical Flow

Problem Definition

Given two consecutive image frames, estimate the motion of each pixel

$I(x, y, t)$

$$
I\left(x, y, t^{\prime}\right)
$$

Estimate the motion
(flow) between these two consecutive images

Key Assumptions

(unique to optical flow \& different from generally estimating two image view transforms!)

Color Constancy

(Brightness constancy for intensity images)
Implication: allows for pixel to pixel comparison (not image features)

Small Motion

(pixels only move a little bit)
Implication: linearization of the brightness constancy constraint

Approach

$I(x, y, t)$

$I\left(x, y, t^{\prime}\right)$

Look for nearby pixels with the same color
(small motion)
(color constancy)

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption:Brightness of the point will remain the same

Assumption 1

Brightness constancy

Scene point moving through image sequence

Assumption:Brightness of the point will remain the same

$$
I(x(t), y(t), t)=C
$$

Assumption 2

Small motion

Small motion

Small motion

Optical flow (velocities): $(u, v) \quad$ Displacement: $(\delta x, \delta y)=(u \delta t, v \delta t)$

Small motion

Optical flow (velocities): $(u, v) \quad$ Displacement: $(\delta x, \delta y)=(u \delta t, v \delta t)$
For a really small space-time step...

$$
I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)
$$

the brightness between two consecutive image frames is the same

$$
I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)
$$

For small space-time step, brightness of a point is the same

$I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)$

For small space-time step, brightness of a point is the same

Insight:

If the time step is really small, we can linearize the intensity function

$$
I(x+u \delta t, y+v \delta t, t+\delta t)=I(x, y, t)
$$

Multivariable Taylor Series Expansion

(First order approximation, three variables)

$$
\begin{array}{rlrl}
I(x, y, t)+\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =I(x, y, t) & & \begin{array}{l}
\text { assuming small } \\
\text { motion }
\end{array} \\
\frac{\partial I}{\partial x} \delta x+\frac{\partial I}{\partial y} \delta y+\frac{\partial I}{\partial t} \delta t & =0 & & \text { divide by } \delta t \\
\text { take limit } \delta t \rightarrow 0
\end{array}
$$

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0 \quad \begin{aligned}
& \text { Brightness } \\
& \text { Constancy Equation }
\end{aligned}
$$

$$
I_{x} u+I_{y} v+I_{t}=0 \quad \text { shorthand notation }
$$

$$
\nabla I^{\top} \boldsymbol{v}+I_{t}=0
$$

vector form
(putting the math aside for a second...)
What do the terms of the brightness constancy equation represent?

$$
I_{x} u+I_{y} v+I_{t}=0
$$

(putting the math aside for a second...)
What do the term of the brightness constancy equation represent?

(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

(putting the math aside for a second...)

What do the term of the brightness constancy equation represent?

How do you compute these terms?

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$

spatial derivative

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}
$$

spatial derivative

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

$$
I_{t}=\frac{\partial I}{\partial t}
$$

temporal derivative

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\begin{gathered}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{gathered}
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

Frame differencing

t					$t+1$							$I_{t}=\frac{\partial I}{\partial t}$				
1	1	1	1	1		1	1	1	1	1		0	0	0	0	0
1	1	1	1	1		1	1	1	1	1		0	0	0	0	0
1	10	10	10	10		1	1	1	1	1		0	9	9	9	9
1	10	10	10	10	-	1	1	10	10			0	9	0	0	0
1	10	10	10	10		1	1	10	10			0	9	0	0	0
1	10	10	10	10		1	1	10	10			0	9	0	0	0

(example of a forward difference)

Example:

$t+1$			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 10 10 1 1 10 10 10 1 1 10 $\mathbf{1 0}$ $\mathbf{1 0}$			

\[

\]

$$
I_{y}=\frac{\partial I}{\partial y}
$$

$$
I_{t}=\frac{\partial I}{\partial t}
$$

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 9 | 9 | 9 | 9 |
| 0 | 9 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 |

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\binom{I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y}}{\text { spatial derivative }}
$$

Forward difference Sobel filter
Derivative-of-Gaussian filter

$u=$| $\frac{d x}{d t} \quad v=\frac{d y}{d t}$ |
| :---: |
| optical flow |\quad| $I_{t}=\frac{\partial I}{\partial t}$ |
| :---: |
| temporal derivative |

How do you compute this? frame differencing

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

$$
\left(\begin{array}{c}
I_{x}=\frac{\partial I}{\partial x} \quad I_{y}=\frac{\partial I}{\partial y} \\
\text { spatial derivative }
\end{array}\right.
$$

Forward difference
Sobel filter
Derivative-of-Gaussian filter

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

We need to solve for this!
(this is the unknown in the optical flow problem)

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

$$
I_{x} u+I_{y} v+I_{t}=0
$$

How do you compute ...

Forward difference
Sobel filter
Derivative-of-Gaussian filter

(u, v)
Solution lies on a line

Cannot be found uniquely with a single constraint

$$
\begin{gathered}
I_{t}=\frac{\partial I}{\partial t} \\
\text { temporal derivative }
\end{gathered}
$$

frame differencing

We need at least \qquad equations to solve for 2 unknowns.

Where do we get more equations (constraints)?

Horn-Schunck

Optical Flow (1981)
brightness constancy
small motion
‘smooth' flow
(flow can vary small from pixel to pixel)

Lucas-Kanade Optical Flow (1981)

method of differences
‘constant’ flow
(flow is constant for all nearby pixels)
local method (sparse)

Where do we get more equations (constraints)?

$I_{x} u+I_{y} v+I_{t}=0$

Assume that the surrounding patch (say 5×5) has 'constant flow'

Assumptions:

Flow is locally smooth
Neighboring pixels have same displacement
Using a 5×5 image patch, gives us 25 equations

$$
\begin{array}{rlrl}
I_{x}\left(\boldsymbol{p}_{1}\right) u+I_{y}\left(\boldsymbol{p}_{1}\right) v & =-I_{t}\left(\boldsymbol{p}_{1}\right) & & \\
I_{x}\left(\boldsymbol{p}_{2}\right) u+I_{y}\left(\boldsymbol{p}_{2}\right) v & =-I_{t}\left(\boldsymbol{p}_{2}\right) & & \\
\vdots & & \text { In General, How } \\
I_{x}\left(\boldsymbol{p}_{25}\right) u+I_{y}\left(\boldsymbol{p}_{25}\right) v & =-I_{t}\left(\boldsymbol{p}_{25}\right) & & \text { Many Solutions? }
\end{array}
$$

Equivalent to solving:

$$
\begin{array}{ccc}
A^{\top} A & \hat{x} & A^{\top} b \\
{\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
\sum_{p \in P} I_{x} I_{t} \\
\sum_{p \in P} I_{y} I_{t}
\end{array}\right]}
\end{array}
$$

where the summation is over each pixel \boldsymbol{p} in patch \boldsymbol{P}

$$
x=\left(A^{\top} A\right)^{-1} A^{\top} b
$$

When is this solvable?

$$
A^{\top} A \hat{x}=A^{\top} b
$$

When is this solvable?

$A^{\top} A \hat{x}=A^{\top} b$

$A^{\top} A$ should be invertible
$A^{\top} A$ should not be too small
λ_{1} and λ_{2} should not be too small
$A^{\top} A$ should be well conditioned
$\lambda_{1} / \lambda_{2}$ should not be too large $\left(\lambda_{1}=\right.$ larger eigenvalue $)$

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{ll}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} \sum_{y} I_{y}
\end{array}\right]
$$

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Harris Corner Detector!

Where have you seen this before?

$$
A^{\top} A=\left[\begin{array}{cc}
\sum_{p \in P} I_{x} I_{x} & \sum_{p \in P} I_{x} I_{y} \\
\sum_{p \in P} I_{y} I_{x} & \sum_{p \in P} I_{y} I_{y}
\end{array}\right]
$$

Harris Corner Detector!

What are the implications?

Implications

- Corners are when $\lambda 1, \lambda 2$ are big; this is also when Lucas-Kanade optical flow works best
- Corners are regions with two different directions of gradient (at least)
- Corners are good places to compute flow!
- That is why Lucas-Kanade flow is considered "local/sparse"

You want to compute optical flow.
What happens if the image patch contains only a line?

Horn-Schunck

 Optical Flow (1981)Berthold K P Horn

Lucas-Kanade Optical Flow (1981)

method of differences
small motion
‘smooth' flow
(flow can vary from pixel to pixel)
global method (dense)

‘constant’ flow

(flow is constant for all pixels)
local method (sparse)

Smoothness

most objects in the world are rigid or deform elastically moving together coherently
we expect optical flow fields to be smooth

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Key idea
(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce brightness constancy

$$
I_{x} u+I_{y} v+I_{t}=0
$$

For every pixel,

$$
\min _{u, v}\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Enforce brightness constancy

$$
I_{x} u+I_{y} v+I_{t}=0
$$

For every pixel,

$$
\min _{u, v}\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow

Enforce smooth flow field

Which flow field optimizes the objective? $\min _{\boldsymbol{u}}\left(u_{i, j}-u_{i+1, j}\right)^{2}$

big

small

Key idea

(of Horn-Schunck optical flow)

Enforce brightness constancy

Enforce smooth flow field

to compute optical flow
bringing it all together...

Horn-Schunck optical flow

$$
\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}
$$

HS optical flow objective function

$$
\text { Brightness constancy } \quad E_{d}(i, j)=\left[I_{x} u_{i j}+I_{y} v_{i j}+I_{t}\right]^{2}
$$

Smoothness

$$
E_{s}(i, j)=\frac{1}{4}\left[\left(u_{i j}-u_{i+1, j}\right)^{2}+\left(u_{i j}-u_{i, j+1}\right)^{2}+\left(v_{i j}-v_{i+1, j}\right)^{2}+\left(v_{i j}-v_{i, j+1}\right)^{2}\right]
$$

How do we solve this minimization problem?

$$
\min _{\boldsymbol{u}, \boldsymbol{v}} \sum_{i, j}\left\{E_{s}(i, j)+\lambda E_{d}(i, j)\right\}
$$

Compute partial derivative, derive update equations (iterative gradient decent!)

Final Algorithm (after some math)

1. Precompute image gradients $I_{x} I_{y}$
2. Precompute temporal gradients I_{t}
3. Initialize flow field $\boldsymbol{u}=\mathbf{0}$

$$
\boldsymbol{v}=\mathbf{0}
$$

4. While not converged

Compute flow field updates for each pixel:

$$
\hat{u}_{k l}=\bar{u}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{x} \quad \hat{v}_{k l}=\bar{v}_{k l}-\frac{I_{x} \bar{u}_{k l}+I_{y} \bar{v}_{k l}+I_{t}}{\lambda^{-1}+I_{x}^{2}+I_{y}^{2}} I_{y}
$$

Optical flow used for feature tracking on a drone

眞 The University of Texas at Austin Electrical and Computer Engineering
Cockrell School of Engineering

